Bayesian Examples

Printout of Excel file to calculate the Bayesian Probability for Time Path post

Monty Hall

1] You choose Door A 2] Monty picks a different door 3] Monty never picks door with prize

• MHB means Monty Hall opens door B ... combine with [1] to single prior [1]

Initial values P(A)	0.333333	PdoorA	prob prize behind A
P(B)	0.333333	PdoorB	prob prize behind B
P(c)	0.333333	PdoorC	prob prize behind C
P(MHB A)	0.5	PMHBA	Probability MH opens B when prize behind A
			You chose A. Goats are behind both B and C 50/50
P(MHB B)	0	PMHBB	Probability MH opens B when prize behind B
			Monty never opens door with prize
P(MHB C)	1	PMHBC	Probability MH opens B when prize behind C
			You chose A, Prize behind C, only choice is B

You chose A, MH shows goat behind B. What is chance that Prize is behind door C? You want $P(C \mid MHB) = P(MHB \mid C)*P(C)/Sum of all P(MHB \mid x)$

Lie Detector

P(steal)	0.013	Psteal	Prior 1
P(honest)	0.987	Phonest	
P(Fail Steal)	0.988	Pfs	Prior 2
P(Fail honest)	0.23	Pfh	

P(steal|fail) 0.053549 =Pfs*Psteal/(Pfs*Psteal+Pfh*Phonest)

P(fail | steal) P(steal)

P(fail | steal) P(steal) + P(fail | honest) P(honest)

www.LastTechAge.wordpress.com